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JACQUET MODULES

OF STRONGLY POSITIVE REPRESENTATIONS

OF THE METAPLECTIC GROUP S̃p(n)

IVAN MATIĆ

Abstract. Strongly positive discrete series represent a particularly important
class of irreducible square-integrable representations of p-adic groups. Indeed,
these representations are used as basic building blocks in known constructions
of general discrete series. In this paper, we explicitly describe Jacquet modules
of strongly positive discrete series. The obtained description of Jacquet mod-
ules, which relies on the classification of strongly positive discrete series given
in our earlier paper on metaplectic groups, is valid in both the classical and
the metaplectic cases. We expect that our results, besides being interesting by
themselves, should be relevant to some potential applications in the theory of
automorphic forms, where both representations of metaplectic groups and the
structure of Jacquet modules play an important part.

1. Introduction

Square-integrable representations occupy an especially important place in uni-
tary duals of reductive groups. A complete classification of irreducible square-
integrable representations (modulo cuspidal representations), so-called discrete se-
ries, for classical p-adic groups, has been given by the work of Mœglin and Tadić
in papers [11] and [12]. In their classification, which relies on certain conjectures, a
prominent role is played by strongly positive discrete series, which serve as a corner-
stone for the construction of general discrete series. Thus, it is of interest to obtain
further information about this class of representations. Recently, we have classi-
fied strongly positive discrete series of metaplectic groups ([10]). Our classification
involves no additional assumptions or conjectures and it is also valid in a classi-
cal group case. The purpose of this paper is to investigate and describe Jacquet
modules of strongly positive discrete series. In this way, we extend results related
to Jacquet modules of regular discrete series of classical groups considered in [20].
The methods used to obtain the above-mentioned classification of strongly positive
discrete series are motivated by [14], where the structure of Jacquet modules of
irreducible unramified representations was also investigated.

Our approach is based on the detailed analysis of certain embeddings of strongly
positive discrete series (which have been obtained in [10] and recalled in this paper)
by the Geometric Lemma ([1], [18]) and Bernstein-Zelevinsky theory ([1], [21]), both
written for metaplectic groups in [5]. We choose to work with symplectic groups
first, and then extend our results to the metaplectic group case.
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For the convenience of the reader, we recall the definition of the strongly positive
discrete series. Let σ denote an irreducible representation of the symplectic group
Sp(n). Such a representation σ is said to be a strongly positive discrete series if for
each embedding of the form σ ↪→ νs1ρ1×· · ·×νsmρm�σcusp, where ρ1, . . . , ρm are
irreducible cuspidal representations of GL(n1, F ), . . . , GL(nm, F ) and σcusp is an
irreducible cuspidal representation of the symplectic group Sp(n′), n′ = n−

∑m
i=1 ni,

we have si > 0 for i = 1, . . . ,m.
Our main interest is to derive Jacquet modules of strongly positive discrete

series with respect to the maximal parabolic subgroups. Iterating these results and
combining them with the results of Jantzen ([7]), Jacquet modules with respect
to the other parabolic subgroups may be obtained. Our results show that Jacquet
modules of strongly positive discrete series are rather similar to those of generalized
Steinberg representations, which have been described in the paper [20].

We expect applications of our results in the classification of general discrete series
of metaplectic groups and in the description of Θ-lifts of strongly positive discrete
series. Also, our results may be used for investigating reducibilities of certain
Jacquet modules or of some generalized principal series, as has been done in the case
of classical groups in [13]. Further, one may use them to derive various examples of
strongly positive discrete series, regarding irreducibility of certain Jacquet modules.

We now describe the contents of the paper in more detail. In the next section we
set up notation and terminology, while in the third section we prove some technical
lemmas which are used later in the paper. The fourth section is devoted to the
proof of our main results in a case of strongly positive discrete series of symplectic
groups whose cuspidal support on the general-linear-group side consists only of the
twists of one irreducible self-contragredient cuspidal representation. Proofs made
in this case may be almost directly generalized to the case of arbitrary strongly
positive discrete series of symplectic groups, and this sort of approach enables us to
avoid many additional technicalities and shorten some proofs. A generalization of
this case is made in the fifth section, where our main results are stated and proved.
The methods of our proofs carry over without any change to the strongly positive
discrete series of the special odd-orthogonal groups. In the sixth section we extend
our results to the metaplectic groups.

2. Preliminaries

We will denote by F a non-Archimedean local field and write GL(n, F ) for the
general linear group of type n × n with entries in F . Let Jn ∈ GL(n, F ) denote
the n × n matrix having 1’s on the second diagonal and all other entries 0. The
symplectic group of rank n, n ≥ 1 is defined as follows:

Sp(n) =

{
g ∈ GL(2n, F ) : g ·

(
0 Jn

−Jn 0

)
· gt =

(
0 Jn

−Jn 0

)}
,

where gt denotes the transposed matrix of g.
There is a well-known bijective correspondence between the set of standard par-

abolic subgroups of the group Sp(n) and the set of all ordered partitions of positive
integers less than or equal to n, which is described in detail in Section 1 of [4]. For
an ordered partition s = (n1, n2, . . . , nk) of some m ≤ n, we denote by Ps a stan-
dard parabolic subgroup of Sp(n, F ) (consisting of block upper-triangular matrices),
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whose Levi factorMs equalsGL(n1, F )×GL(n2, F )×· · ·×GL(nk, F )×Sp(n−|s|, F ),
where |s| = m.

The representation of Sp(n) that is parabolically induced from the representation
π1 ⊗ · · · ⊗ πk ⊗ σ of Ms will be denoted by π1 × · · · × πk � σ.

Let R(n) be the Grothendieck group of the category of all admissible representa-
tions of finite length of Sp(n) (i.e., a free abelian group over the set of all irreducible
representations of Sp(n)), where we identify an irreducible representation with its
isomorphism class, and define R =

⊕
n≥0 R(n). Also, let G =

⊕
n G(n), where

G(n) denotes the Grothendieck group of smooth representations of finite length of
GL(n, F ).

By ν we mean a character of GL(n, F ) defined by |det|F , where | |F denotes
the normalized absolute value on F . For an irreducible cuspidal representation ρ
of the group GL(n, F ), the set of representations Δ = {νaρ, νa+1ρ, . . . , νa+kρ}
is called a segment (k ∈ Z≥0). Here and subsequently, we use the abbreviation
Δ = [νaρ, νa+kρ]. Further, we denote by δ(Δ) an essentially square-integrable
representation, which is obtained as the unique irreducible subrepresentation of
νa+kρ× νa+k−1ρ× · · · × νaρ.

For every irreducible cuspidal representation ρ of GL(n, F ) there exists a unique
e(ρ) ∈ R such that ν−e(ρ)ρ is a unitary cuspidal representation. In the sequel, let
e([νaρ, νbρ]) = a+b

2 .
An irreducible representation ρ of some GL(n, F ) is called self-contragredient

if ρ � ρ̃. Let ρ1, . . . , ρk denote irreducible cuspidal representations of groups
GL(n1, F ), . . . , GL(nk, F ), respectively, and let σcusp denote an irreducible cus-
pidal representation of Sp(n′). We say that the representation σ of Sp(n) belongs
to the set D(ρ1, . . . , ρk;σcusp) if the cuspidal support of σ is contained in the set
{νxρ1, . . . , νxρk, σcusp : x ∈ R}.

For an irreducible representation σ of Sp(n) there exist an ordered partition
s = (n1, n2, . . . , nk) of some m ≤ n, irreducible cuspidal representations πi of
GL(ni, F )), i = 1, 2, . . . , k, and an irreducible cuspidal representation σcusp of
Sp(n − m) such that σ is an irreducible subquotient of the induced representa-
tion π1 × π2 × · · · × πk � σcusp. The proof of this fact can be found in [3, Theorem
5.1.2].

If σ is a discrete series, it is a classical result, which can be deduced from [19],
that every representation πi may be written in the unique way as νxiρi, where ρi is
an irreducible self-contragredient cuspidal unitarizable representation of GL(ni, F ),
for i = 1, 2, . . . , k. Following [8], we write

[σ] = [νx1ρ1, ν
x2ρ2, . . . , ν

xkρk, σcusp].

In this way, we attach to an irreducible representation σ a multiset {νx1ρ1, ν
x2ρ2,

. . . , νxkρk}, which is unique up to replacing some νxiρi by ν−xi ρ̃i. Consequently,
when saying [σ1] = [σ2] we shall mean that [σ2] can be obtained by taking contra-
gredients of some irreducible representations of the general linear group appearing
in [σ1].

Next, the special odd-orthogonal group of rank n is defined by

SO(2n+ 1) = {g ∈ SL(2n+ 1, F ) : g · J2n+1 · gt = J2n+1},

where SL(n, F ) denotes a special linear group consisting of all elements of GL(n, F )
with determinant equal to 1.
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Standard parabolic subgroups of the group SO(2n+1) can be described in pretty
much the same way as for the symplectic group Sp(n); for a fuller treatment we
refer the reader to [4]. Moreover, the aforementioned facts about the representation
theory of symplectic groups are also valid in the case of special odd-orthogonal
groups.

Now we shall fix notation related to the metaplectic groups. Unlike in the sym-
plectic case, here we assume that F has characteristic different than two.

The metaplectic group S̃p(n) is given as the unique non-trivial two-fold central
extension

1 → μ2 → S̃p(n) → Sp(n) → 1,

where μ2 = {1,−1} and the cocycle involved is Rao’s cocycle ([16]). More on the

topology of the group S̃p(n) and its structural theory can be found in [5], [9] and
[16].

Let ˜GL(n, F ) be a double cover of GL(n, F ), where the multiplication is given
by (g1, ε1)(g2, ε2) = (g1g2, ε1ε2(detg1, detg2)F ). Here εi ∈ μ2, i = 1, 2 and (·, ·)F
denotes the Hilbert symbol of the field F . From now on, α denotes the character

of ˜GL(n, F ) given by α(g) = (detg, detg)F = (detg,−1)F .
Let s = (n1, n2, . . . , nk) denote an ordered partition of some m ≤ n. Then the

standard parabolic subgroup P̃s of S̃p(n) is the preimage of the standard parabolic

subgroup Ps in S̃p(n). Let us denote by M̃s the Levi factor of the parabolic subgroup

P̃s. There is an epimorphism with finite kernel

φ : ˜GL(n1, F )× ˜GL(n2, F )× · · · × ˜GL(nk, F )× ˜Sp(n− |s|) → M̃s.

So, an irreducible representation π of M̃s may be considered as a representation
π1 ⊗ · · · ⊗ πk ⊗ σ, where π1, . . . , πk, σ are irreducible representations that are all

trivial or all non-trivial when restricted on μ2. The representation of S̃p(n) that
is parabolically induced from the representation π1 ⊗ · · · ⊗ πk ⊗ σ will again be
denoted by π1 × · · · × πk � σ.

In this paper we are interested only in genuine representations of S̃p(n) (i.e.,
those which do not factor through μ2). So, let S(n) be the Grothendieck group

of the category of all admissible genuine representations of finite length of S̃p(n)

and define S =
⊕

n≥0 S(n). Further, we define Ggen =
⊕

n Ggen( ˜GL(n, F )), where

Ggen( ˜GL(n, F )) denotes the Grothendieck group of smooth genuine representations

of finite length of ˜GL(n, F ).

For an irreducible genuine cuspidal representation ρ of the group ˜GL(n, F ), we
say that Δ = {νaρ, νa+1ρ, . . . , νa+kρ} is a genuine segment (k ∈ Z≥0). Again,
we use the abbreviation Δ = [νaρ, νa+kρ] and denote by δ(Δ) the unique irre-
ducible subrepresentation of νa+kρ× νa+k−1ρ× · · · × νaρ. By [4], Proposition 4.2,
δ(Δ) is a genuine essentially square-integrable representation attached to Δ. Let
e([νaρ, νbρ]) = a+b

2 , and note that e([νaρ, νbρ]) = e(δ([νaρ, νbρ])), by Section 4 of
[4].
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An irreducible genuine representation ρ of some ˜GL(n, F ) is called self-dual if

ρ � αρ̃. For an irreducible cuspidal genuine self-dual representation ρ of ˜GL(n, F )

and an irreducible cuspidal genuine representation σ of S̃p(n′), it is shown in [6]
that there exists a unique s ≥ 0 such that the induced representation νsρ � σ
reduces.

As in the symplectic case, we say that the genuine representation σ of S̃p(n)
belongs to the set D(ρ1, . . . , ρk;σcusp) if the cuspidal support of σ is contained in
the set {νxρ1, . . . , νxρk, σcusp : x ∈ R}, where ρ1, . . . , ρk are irreducible genuine

cuspidal representations of the groups ˜GL(n1, F ), . . . , ˜GL(nk, F ) and σcusp is an

irreducible genuine cuspidal representation of S̃p(n′).

Let σ denote an irreducible genuine representation S̃p(n), for some n. By Propo-
sition 4.4 from [5] there exists an ordered partition s = (n1, n2, . . . , nk) of some m ≤
n, irreducible genuine cuspidal representations πi of ˜GL(ni, F ), i = 1, 2, . . . , k, and

an irreducible genuine cuspidal representation σcusp of ˜Sp(n−m) such that σ is an
irreducible subrepresentation of the induced representation π1×π2×· · ·×πk�σcusp.
If σ is a discrete series representation, it is a direct consequence of [5] and [10] that
every representation πi may be written in the unique way as νxiρi, where ρi is

an irreducible genuine self-dual cuspidal unitarizable representation of ˜GL(ni, F ),
for i = 1, 2, . . . , k. By [8, page 236], the multiset {π1, π2, . . . , πk} is unique up to
replacing some πi by απ̃i = ν−xiρi.

Again, we write

[σ] = [νx1ρ1, ν
x2ρ2, . . . , ν

xkρk, σcusp],

and when saying [σ1] = [σ2], for irreducible genuine representations σ1 and σ2 of

S̃p(n), we shall mean that [σ2] can be obtained by multiplying some irreducible
genuine representations of two-fold covers of general linear groups appearing in [σ1]
with the character α after taking their contragredients.

An irreducible representation σ of Sp(n) is called strongly positive if for each
representation νs1ρ1 × νs2ρ2 × · · · × νskρk � σcusp, where ρi, i = 1, 2, . . . , k, are
irreducible cuspidal unitary representations, σcusp an irreducible cuspidal represen-
tation of Sp(n′) and si ∈ R, i = 1, 2, . . . , k, such that

σ ↪→ νs1ρ1 × νs2ρ2 × · · · × νskρk � σcusp,

we have si > 0 for each i. Strongly positive representations of metaplectic groups
and of other classical groups are defined in a completely analogous way. Observe
that every strongly positive representation is square-integrable.

Irreducible strongly positive representations are often called strongly positive
discrete series.

In [10] we have shown that every strongly positive discrete series representation
can be realized in a unique way (up to a certain permutation) as a unique irreducible
subrepresentation of the induced representation

(2.1) (
m∏
i=1

ki∏
j=1

δ([νaρi
−ki+jρi, ν

b
(i)
j ρi]))� σcusp,
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where

• ρ1, . . . , ρm are non-isomorphic irreducible cuspidal representations of groups
GL(n1, F ), . . . , GL(nm, F ) and σcusp is an irreducible cuspidal representa-
tion of Sp(n′),

• aρi
> 0, such that νaρiρi � σcusp reduces,

• ki = �aρi
	, where �aρi

	 denotes the smallest integer which is not smaller
than aρi

,

• b
(i)
j > −1 such that b

(i)
j − aρi

∈ Z≥0, for i = 1, . . . ,m, j = 1, . . . , ki,

• b
(i)
j < b

(i)
j+1 for 1 ≤ j ≤ ki − 1.

We omit δ([νxρ, νyρ]) if x > y.
It is important to note that a completely analogous classification holds for special

odd-orthogonal groups and for the metaplectic ones (of course, if σ is a genuine

representation of S̃p(n), representations ρ1, . . . , ρm and σcusp should also be genuine
representations of corresponding two-fold covers).

For the convenience of the reader we recall both the classical and the metaplectic
versions of the useful Tadić’s structure formula (Theorem 5.4 from [18] and Propo-
sition 4.5 from [5]), which enable us to calculate Jacquet modules of an induced
representation. We denote by m the linear extension to G⊗G of parabolic induction
from a maximal parabolic subgroup. Let σ denote an irreducible representation of
Sp(n). Then r(k)(σ) (the normalized Jacquet module of σ with respect to the stan-
dard maximal parabolic subgroup P(k)) can be interpreted as a representation of
GL(k, F )× Sp(n− k), i.e., is an element of G ⊗R. For such a σ we can introduce
μ∗(σ) ∈ G ⊗R by

μ∗(σ) =
n∑

k=0

s.s.(r(k)(σ))

(s.s. denotes the semisimplification) and extend μ∗ linearly to the whole of R.
Using Jacquet modules for the maximal parabolic subgroups of GL(n, F ) we can

also define m∗(π) =
∑n

k=0 s.s.(rk(π)) ∈ R ⊗R, for an irreducible representation π
of GL(n, F ), and then extend m∗ linearly to the whole of R. Here rk(π) denotes
the Jacquet module of the representation π with respect to the parabolic subgroup
whose Levi factor is GL(k, F )×GL(n− k, F ). We define κ : R⊗R → R⊗R by
κ(x ⊗ y) = y ⊗ x and extend the contragredient ˜ to an automorphism of R in
the natural way. Let M∗ : R → R⊗R be defined by

M∗ = (m⊗ id) ◦ (̃⊗m∗) ◦ κ ◦m∗.

The following theorem presents a crucial formula for our calculations with
Jacquet modules:

Theorem 2.1. For π ∈ G and σ ∈ R, the following structure formula holds:

μ∗(π � σ) = M∗(π)� μ∗(σ).

Using the previous theorem, we obtain:

Lemma 2.2. Let ρ be an irreducible cuspidal representation of GL(n, F ) and a, b ∈
R such that a + b ∈ Z≥0. Let σ be an admissible representation of finite length of
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Sp(m). Write μ∗(σ) =
∑

τ,σ′ τ ⊗ σ′. Then the following hold:

M∗(δ([ν−aρ, νbρ])) =
b∑

i=−a−1

b∑
j=i

δ([ν−iρ̃, νaρ̃])×δ([νj+1ρ, νbρ])⊗δ([νi+1ρ, νjρ]),

μ∗(δ([ν−aρ, νbρ])� σ) =

b∑
i=−a−1

b∑
j=i

∑
τ,σ′

δ([ν−iρ̃, νaρ̃])× δ([νj+1ρ, νbρ])× τ

⊗ δ([νi+1ρ, νjρ])� σ′.

We omit δ([νxρ, νyρ]) if x > y.

Let us briefly describe the extension of the stated structure formula to the meta-
plectic groups. We mainly follow the notation introduced for symplectic groups.

For an irreducible genuine representation σ of S̃p(n) we define μ∗
1(σ) ∈ Ggen ⊗S

by

μ∗
1(σ) =

n∑
k=0

s.s.(r(k)(σ)),

where r(k)(σ) now stands for the normalized Jacquet module of σ with respect to

the maximal parabolic subgroup P̃(k), and extend μ∗
1 linearly to the whole of S.

For an irreducible genuine representation π of the group ˜GL(n, F ), set m∗
1(π) =∑n

k=0 s.s.(rk(π)) ∈ Ggen ⊗ Ggen and extend m∗
1 linearly to the whole of Ggen (here

rk(π) denotes the Jacquet module of the representation π with respect to the par-

abolic subgroup whose Levi factor is ˜GL(k, F )× ˜GL(n− k, F )).
We denote by m1 the linear extension to Ggen⊗Ggen of parabolic induction from

a maximal parabolic subgroup. By κ1 we will denote the mapping of Ggen ⊗ Ggen

into Ggen ⊗ Ggen defined by κ1(x ⊗ y) = y ⊗ x, and we extend the contragredient˜ to an automorphism of Ggen in the natural way.
Finally, we define M∗

1 : Ggen → Ggen ⊗ Ggen by

M∗
1 = (m1 ⊗ id) ◦ (̃α⊗m∗

1) ◦ κ1 ◦m∗
1,

where α̃means taking the contragredient of the representation and then multiplying
by the character α.

The structure formula for genuine representations of metaplectic groups is given
by the following theorem:

Theorem 2.3. For π ∈ Ggen and σ ∈ S, the following structure formula holds:

μ∗
1(π � σ) = M∗

1 (π)� μ∗
1(σ).

Further, let ρ denote an irreducible cuspidal genuine representation of ˜GL(n, F )
and let a, b ∈ R such that a + b ∈ Z≥0. Let σ stand for an admissible genuine

representation of finite length of S̃p(m) and write μ∗
1(σ) =

∑
τ,σ′ τ ⊗ σ′. Then the

following holds:

M∗
1 (δ([ν

−aρ, νbρ])) =

b∑
i=−a−1

b∑
j=i

δ([ν−iαρ̃, νaαρ̃])× δ([νj+1ρ, νbρ])

⊗ δ([νi+1ρ, νjρ]),

where we omit δ([νxρ, νyρ]) if x > y.
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The following fact, which is proved in [4, Theorem 2.1], will also be used: for
an irreducible representation π of GL(k, F ) and an irreducible representation σ of
Sp(n), in R we have

π � σ = π̃ � σ.

A similar result for metaplectic groups follows directly from [5] (or by using the
geometric construction of the intertwining operators from [15]): if π is an irreducible

genuine representation of ˜GL(k, F ) and σ an irreducible genuine representation of

S̃p(n), then the following equality

π � σ = π̃α� σ

holds in S.
We also use the following equation:

m∗(δ([νaρ, νbρ])) =
b∑

i=a−1

δ([νi+1ρ, νbρ])⊗ δ([νaρ, νiρ]).

Note that multiplicativity of m∗ implies

m∗(
n∏

j=1

δ([νajρj , ν
bjρj ]))

=

n∏
j=1

(

bj∑
ij=aj−1

δ([νij+1ρj , ν
bjρj ])⊗ δ([νajρj , ν

ijρj ])).(2.2)

It is clear that the mapping m∗
1 has completely analogous properties.

We take a moment to recall the Langlands classification for representation of
general linear groups. As in [7], we favor the subrepresentation version of this
classification over the quotient version. The main advantage of this version is that
it enables us to recover some interesting representations from certain members of
their Jacquet modules.

First, for every irreducible essentially square-integrable representation δ of the
group GL(n, F ), there exists an e(δ) ∈ R such that the representation ν−e(δ)δ
is unitarizable. Suppose δ1, δ2, . . . , δk are irreducible, essentially square-integrable
representations of GL(n1, F ), GL(n2, F ), . . . , GL(nk, F ) with e(δ1) ≤ e(δ2) ≤ . . . ≤
e(δk). Then the induced representation δ1 × δ2 × · · · × δk has a unique irreducible
subrepresentation, which we denote by L(δ1, δ2, . . . , δk). This irreducible subrepre-
sentation is called the Langlands subrepresentation, and it appears with multiplicity
one in δ1 × δ2 × · · · × δk. Every irreducible representation π of GL(n, F ) is isomor-
phic to some L(δ1, δ2, . . . , δk). Given π, the representations δ1, δ2, . . . , δk are unique
up to a permutation. If i1, i2, . . . , ik is a permutation of 1, 2, . . . , k such that the
representations δi1 × δi2 × · · · × δik and δ1 × δ2 × · · · × δk are isomorphic, we also
write L(δi1 , δi2 , . . . , δik) for L(δ1, δ2, . . . , δk).

It is important to note that a completely analogous classification holds for ir-
reducible genuine representations of two-fold covers of general linear groups. This
version, which will be used in the final section of this paper, can be obtained using
Lemma 3.1 (i) from [10] and part 3 of the Proposition 4.2 from [5].
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3. Some technical results

In this section we collect some technical facts that will be used throughout the
paper.

In the sequel, we shall say that an irreducible representation π1 is contained in
the representation π2, or π1 ≤ π2, if π1 is an irreducible subquotient of π2.

First, we shall prove a lemma which will be needed for the determination of the
GL-parts of Jacquet modules of strongly positive discrete series (this is Lemma
1.3.1 from [7], but we were unable to find the convenient reference for the proof,
so, for the sake of completeness, we give one).

Lemma 3.1. Let ρ denote an irreducible unitarizable cuspidal representation of the
group GL(n, F ). Let π be an irreducible subquotient of the induced representation
δ([νa1ρ, νb1ρ])× δ([νa2ρ, νb2ρ])×· · ·× δ([νanρ, νbnρ]), where b1 ≤ b2 ≤ . . . ≤ bn and
ai ≤ bi for i = 1, 2, . . . , n. Then,

π = L(δ([νa
′
1ρ, νb1ρ]), δ([νa

′
2ρ, νb2ρ]), . . . , δ([νa

′
nρ, νbnρ]))

for some permutation a′1, a
′
2, . . . , a

′
n of a1, a2, . . . , an. (Here we allow case a′i > bi

for some i; i.e., some segments in the Langlands subrepresentation may be empty.)

Proof. In the proof of this lemma we use the following technical claim:

Claim 3.2. Let b1 ≤ b2 ≤ . . . ≤ bn. Suppose that π is an irreducible subquotient
of the induced representation δ([νa1ρ, νb1ρ])× δ([νa2ρ, νb2ρ])×· · ·× δ([νanρ, νbnρ]),

where ai ≤ bi for i = 1, 2, . . . , n. If the representation δ([νa
′
1ρ, νb

′
1ρ])⊗δ([νa

′
2ρ, νb

′
2ρ])

⊗ · · · ⊗ δ([νa
′
kρ, νb

′
kρ]), where b′1 ≤ b′2 ≤ . . . ≤ b′k and a′i ≤ b′i for i = 1, 2, . . . , k, is

contained in the Jacquet module of π, then k ≤ n. Also, multisets {a′1, a′2, . . . , a′k}
and {b′1, b′2, . . . , b′k} are contained in multisets {a1, a2, . . . , an} and {b1, b2, . . . , bn},
respectively. Further, if k = n, then b′i = bi for i = 1, 2, . . . , n and a′1, a

′
2, . . . , a

′
n is

a permutation of a1, a2, . . . , an.

Proof of the Claim 3.2. The proof is by induction over n.
For n = 1 the claim obviously holds.
We prove the claim for n = 2. Let π ≤ δ([νa1ρ, νb1ρ]) × δ([νa2ρ, νb2ρ]), where

b1 ≤ b2. If the representation δ([νa1ρ, νb1ρ]) × δ([νa2ρ, νb2ρ]) is irreducible, then
π = L(δ([νa1ρ, νb1ρ]), δ([νa2ρ, νb2ρ])) and the claim follows directly from (2.2). The
details are left to the reader. If the representation δ([νa1ρ, νb1ρ]) × δ([νa2ρ, νb2ρ])
reduces, we have two possibilities:

• π = L(δ([νa1ρ, νb1ρ]), δ([νa2ρ, νb2ρ])), and the claim follows in the same
way as in the previous case;

• π = δ([νa2ρ, νb1ρ]) × δ([νa1ρ, νb2ρ]), and the claim is again implied by the
formula (2.2). Observe that the first segment appears to be empty for
a2 = b1 + 1.

Suppose that the claim holds for all m ≤ n− 1. We prove it for m = n.
Since π ≤ δ([νa1ρ, νb1ρ]) × δ([νa2ρ, νb2ρ]) × · · · × δ([νanρ, νbnρ]), transitivity

of Jacquet modules and formula (2.2) imply that there exist i1, i2, . . . , in, satis-

fying aj − 1 ≤ ij ≤ bj , such that δ([νa
′
kρ, νb

′
kρ]) is an irreducible subquotient

of the representation δ([νa1ρ, νi1ρ]) × δ([νa2ρ, νi2ρ]) × · · · × δ([νanρ, νinρ]) and
δ([νi1+1ρ, νb1ρ])×δ([νi2+1ρ, νb2ρ])×· · ·×δ([νin+1ρ, νbnρ]) contains irreducible rep-

resentation δ([νa
′
1ρ, νb

′
1ρ])⊗ δ([νa

′
2ρ, νb

′
2ρ])⊗ · · · ⊗ δ([νa

′
k−1ρ, νb

′
k−1ρ]) in its Jacquet

module.
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Thus, we obtain the following equality of sets:

[νa
′
kρ, νb

′
kρ] = {νa1ρ, νa1+1ρ, . . . , νi1ρ, νa2ρ, νa2+1ρ, . . . , νi2ρ, . . . ,

νanρ, νan+1ρ, . . . , νinρ}.
The maximality of b′k implies b′k = bn, so there is some jk such that ijk = bjk = bn.
Also, if a′k < ajk , then there is some j′k, 1 ≤ j′k ≤ n, such that ij′k equals ajk − 1.
We continue in the same fashion to obtain that i1, i2, . . . , ijk−1, ijk+1, . . . , in is a
permutation of a1 − 1, a2 − 1, . . . , ajk−1 − 1, ajk+1 − 1, . . . , an − 1, while ijk = bjk
(which is equal to bn). Obviously, a′k = aj , for some j ∈ {1, 2, . . . , n}.

Further, the induced representation

δ([νi1+1ρ, νb1ρ])× · · · × δ([νijk−1+1ρ, νbjk−1ρ])

×δ([νijk+1+1ρ, νbjk+1ρ])× · · · × δ([νin+1ρ, νbnρ])

has to contain δ([νa
′
1ρ, νb

′
1ρ])⊗δ([νa

′
2ρ, νb

′
2ρ])⊗· · ·⊗δ([νa

′
k−1ρ, νb

′
k−1ρ]) in its Jacquet

module.
Since this representation is a product of n − 1 irreducible essentially square-

integrable representations, b1 ≤ b2 ≤ . . . ≤ bjk−1 ≤ bjk+1 = bjk+2 = · · · = bn and
i1+1, i2+1, . . . , ijk−1+1, ijk+1+1, . . . , in is a permutation of a1, a2, . . . , ajk−1, ajk+1,
. . . , an, by the inductive assumption we get k−1 ≤ n−1, {a′1, a′2, . . . , a′k−1} is con-
tained in the multiset {a1, a2, . . . , ajk−1, ajk+1, . . . , an}, and {b′1, b′2, . . . , b′jk−1, b

′
jk+1,

. . . b′k} is contained in the multiset {b1, b2, . . . , bjk−1, bn, . . . , bn}. This proves the
claim. �

We proceed with the proof of Lemma 3.1.
By the Langlands classification, π is isomorphic to L(δ1, δ2, . . . , δk), where each

δi, i = 1, 2, . . . , k, is an irreducible, essentially square-integrable representation of
GL(ni, F ) and e(δ1) ≤ e(δ2) ≤ . . . ≤ e(δk). Write δi = δ([νa

′
iρ, νb

′
iρ]).

Let us denote by A,B the multisets {a1, a2, . . . , an}, {b1, b2, . . . , bn}, respec-
tively. Also, we denote by A′, B′ the multisets {a′1, a′2, . . . , a′k}, {b′1, b′2, . . . , b′k},
respectively.

If b′i > b′j for i < j, then the inequality e(δi) ≤ e(δj) yields a
′
i < a′j . So, the seg-

ment [νa
′
iρ, νb

′
iρ] contains the segment [νa

′
jρ, νb

′
jρ] and the induced representations

δ([νa
′
iρ, νb

′
iρ]) × δ([νa

′
jρ, νb

′
jρ]) and δ([νa

′
jρ, νb

′
jρ]) × δ([νa

′
iρ, νb

′
iρ]) are isomorphic.

Therefore, we may suppose that b′1 ≤ b′2 ≤ . . . ≤ b′k.
Since π is the (unique irreducible) subrepresentation of the induced represen-

tation δ([νa
′
1ρ, νb

′
1ρ])× δ([νa

′
2ρ, νb

′
2ρ])× · · · × δ([νa

′
kρ, νb

′
kρ]), Frobenius reciprocity

implies that the Jacquet module of π contains δ([νa
′
1ρ, νb

′
1ρ])⊗δ([νa

′
2ρ, νb

′
2ρ])⊗· · ·⊗

δ([νa
′
kρ, νb

′
kρ]) as an irreducible subquotient.

Now Claim 3.2 implies k ≤ n. Further, the multiset A′ is contained in the
multiset A, while the multiset B′ is contained in the multiset B.

Suppose k < n. Then we can write A\A′ = {a′′1 , a′′2 , . . . , a′′n−k} and B\B′ =
{b′′1 , b′′2 , . . . , b′′n−k}. We assume a′′i ≤ a′′j and b′′i ≤ b′′j for i ≤ j. It may be easily
concluded from the proof of the Claim 3.2 that a′′i > b′′i , for i = 1, 2, . . . , n− k.

Thus, after adding n− k empty segments, we may write

π = L(δ([νa
′′′
1 ρ, νb1ρ]), δ([νa

′′′
2 ρ, νb2ρ]), . . . , δ([νa

′′′
n ρ, νbnρ])),

where a′′′1 , a′′′2 , . . . , a′′′n is a permutation of a1, a2, . . . , an. This completes the proof.
�
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The following result may be proved in much the same way as Lemma 3.1:

Lemma 3.3. Let ρ denote an irreducible unitarizable cuspidal representation of the
group GL(n, F ). Let π be an irreducible subquotient of the induced representation
δ([νa1ρ, νb1ρ]) × δ([νa2ρ, νb2ρ]) × · · · × δ([νanρ, νbnρ]), where a1 ≤ a2 ≤ . . . ≤ an
and ai ≤ bi for i = 1, 2, . . . , n. Then,

π = L(δ([νa1ρ, νb
′
1ρ]), δ([νa2ρ, νb

′
2ρ]), . . . , δ([νanρ, νb

′
nρ]))

for some permutation b′1, b
′
2, . . . , b

′
n of b1, b2, . . . , bn. (Here we allow the case ai > b′i

for some i; i.e., some segments in the Langlands subrepresentation may be empty.)

The following lemma is important for further calculations:

Lemma 3.4. Let σ denote a strongly positive discrete series representation of
Sp(n, F ). Suppose that τ is an irreducible representation of GL(t, F ) and σ′ an
irreducible representation of Sp(n− t, F ) such that τ ⊗ σ′ is an irreducible subquo-
tient of r(t)(σ). Then σ′ is a strongly positive discrete series.

Proof. Suppose that σ′ is not a strongly positive discrete series. Then there is
an embedding σ′ ↪→ νa1ρ1 × · · · × νal1ρl1 � σcusp such that ai ≤ 0 for some i ∈
{1, . . . , l1}. Frobenius reciprocity implies that the Jacquet module of σ′ with respect
to the appropriate parabolic subgroup contains νa1ρ1 ⊗ · · · ⊗ νal1ρl1 ⊗ σcusp.

Further, we fix an embedding τ ↪→ νal1+1ρl1+1 × · · · × νal2ρl2 , where νaiρi is an
irreducible cuspidal representation of GL(ni, F ), for i = l1 + 1, . . . , l2. Then the
Jacquet module of τ with respect to the appropriate parabolic subgroup contains
νal1+1ρl1+1 ⊗ · · · ⊗ νal2ρl2 . Using transitivity of Jacquet modules we conclude that
the representation νal1+1ρl1+1 ⊗ · · · ⊗ νal2ρl2 ⊗ νa1ρ1 ⊗ · · · ⊗ νal1ρl1 ⊗ σcusp is an
irreducible subquotient of the Jacquet module of σ with respect to the appropriate
parabolic subgroup. Since this representation is cuspidal, [2], Lemma 26, implies
that it is a quotient. Consequently, σ is a subrepresentation of νal1+1ρl1+1 × · · · ×
νaiρi × · · · × νal1ρl1 � σcusp. Since ai ≤ 0, that contradicts the strong positivity of
σ and thus the lemma is proved.

Notice that we have also proved ai > 0, for l1 + 1 ≤ i ≤ l2. �
Finally, we show some specific and useful properties of strongly positive discrete

series.

Lemma 3.5. Let σ be a strongly positive discrete series representation of Sp(n).
Then σ is uniquely determined by [σ].

Proof. Write [σ] = [π1, π2, . . . , πl, σcusp] and denote by M the multiset {π1, π2, . . . ,
πl}. Results of [10] enable us to assume that every element πi is of the form νxρ,
where ρ is an irreducible unitarizable self-contragredient cuspidal representation
and x > 0. Representation σ may be written as a unique irreducible subrepresen-
tation of the induced representation of the form (2.1).

Then σ is uniquely determined by the cuspidal representation σcusp and sequence

(b
(1)
1 , b

(1)
2 , . . . , b

(1)
k1

, b
(2)
1 , . . . , b

(2)
k2

, . . . , b
(m)
1 , . . . , b

(m)
km

).

Let i ∈ {1, 2, . . . ,m} be arbitrary, but fixed. We denote by Mi the submultiset
consisting of elements of M of the form νxρi (where every element is taken with
the same multiplicity as in M).

Define x1 = max{x : νxρi ∈ Mi}. Theorem 5.1 of [10] implies that νx1ρi appears

in Mi with multiplicity one. Thus, b
(i)
ki

= x1.
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Now, define M
(1)
i = Mi \ {νaρiρi, ν

aρi
+1ρi, . . . , ν

b
(i)
ki ρi}. If the multiset M

(1)
i

is non-empty, it may be concluded in the same way as before that b
(i)
ki−1 equals

max{x : νxρi ∈ M
(1)
i }; otherwise b

(i)
ki−1 = aρi

− 2.

We continue in this fashion to obtain that the sequence (b
(i)
1 , b

(i)
2 , . . . , b

(i)
ki
) is

uniquely determined by [σ], for every i = 1, 2, . . . ,m. This shows that σ is uniquely
determined by [σ], which is the desired conclusion. �

Lemma 3.6. Let σ1, σ2 denote representations in discrete series of Sp(n), and
suppose that [σ1] and [σ2] are equal. If one of these representations is strongly
positive, then σ1 � σ2.

Proof. Write [σ1] = [σ2] = [νs1ρ1, ν
s2ρ2, . . . , ν

stρt, σcusp], where ρi is an irreducible
self-contragredient cuspidal unitarizable representation, for i = 1, 2, . . . , t.

We may suppose that the representation σ1 is strongly positive and realize it
as a unique irreducible subrepresentation of the representation of the form (2.1).
Thus, we may write

σ1 ↪→ (
m∏
i=1

ki∏
j=1

δ([νaρi
−ki+jρi, ν

b
(i)
j ρi]))� σcusp,

with m minimal and ki minimal, for i = 1, 2, . . . ,m (this just allows us to drop out
all perhaps empty segments appearing in (2.1)). Obviously,

[σ1] = [νaρ1
−k1+1ρ1, . . . , ν

b
(1)
1 ρ1, ν

aρ1
−k1+2ρ1, . . . , ν

b
(1)
2 ρ1, . . . , ν

b
(m)
km ρm, σcusp].

Let us first show that σ2 also has to be a strongly positive representation. On
the contrary, suppose that there exists some embedding

σ2 ↪→ νx1ρi1 × · · · × νxrρir × · · · × νxtρit � σcusp,

where xr ≤ 0. Define y = min{r : xr ≤ 0}. If y = 1, we get a contradiction with
the square-integrability of the representation σ2. Suppose y ≥ 2.

Equality [σ1] = [σ2] implies that xi �= 0, for i = 1, 2, . . . , t. This yields xy < 0.
We have the following possibilities:

• xy ≤ −1: For j < y we have xj > 0. Hence, representation νxjρij × νxyρiy
is irreducible for j < y and thus isomorphic to νxyρiy × νxjρij . We obtain
the following isomorphisms:

σ2 ↪→ νx1ρi1 × · · · × νxy−1ρiy−1
× νxyρiy × · · · × νxtρit � σcusp

� νx1ρi1 × · · · × νxyρiy × νxy−1ρiy−1
× · · · × νxtρit � σcusp

...

� νxyρiy × νx1ρi1 × · · · × νxtρit � σcusp,

contradicting square-integrability of σ2.
• −1 < xy: Inspecting the embedding (2.1) more precisely, it is not hard to
see that for each i = 1, 2, . . . ,m there exists at most one representation
of the form νziρi, with 0 < zi < 1, appearing in [σ1]. Moreover, if such
a representation appears in [σ1] it must be equal to νaρi

−ki+1ρi, implying
that xy equals ki − aρi

− 1 for some i ∈ {1, 2, . . . ,m}. Since [σ1] = [σ2],
the representations νxyρiy and ν−xyρiy can’t both appear in [σ2]. It follows
that the representation νxjρij ×νxyρiy is irreducible for j < y. Now we get
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the contradiction with square-integrability of σ2 in the same way as in the
previous case.

Since σ1 and σ2 are strongly positive representations such that [σ1] = [σ2], the
previous lemma completes the proof. �

4. Jacquet modules of strongly positive representations of the

symplectic group: D(ρ, σcusp) case

In this section, we explicitly describe Jacquet modules of strongly positive rep-
resentations contained in the set D(ρ, σcusp), where ρ is an irreducible cuspidal
self-contragredient representation of GL(nρ, F ) and σcusp is an irreducible cuspidal
representation of Sp(n′). In the following section we discuss Jacquet modules in
the general case.

If the representation ρ � σcusp reduces, then the only strongly positive discrete
series in D(ρ, σcusp) is the representation σcusp, so in the rest of this section we
assume that the representation νaρ � σcusp reduces for a > 0 (uniqueness of such
an a was proved in [17]). Let σ ∈ D(ρ, σcusp) denote the strongly positive discrete
series representation of Sp(n), which will be fixed throughout this section. We may
assume that σ is not equal to σcusp.

We analyze the Jacquet modules of the representation σ using the classification
obtained in Section 4 of [10]. Theorems 4.4 and 4.5 of that paper assert that
there exists a unique increasing sequence of real numbers 0 < b1 < b2 < · · · <
bk, bi − a + k − i ∈ Z≥0 for 1 ≤ i ≤ k, such that σ is the unique irreducible
subrepresentation of

δ([νa−k+1ρ, νb1ρ])× · · · × δ([νaρ, νbkρ])� σcusp.(4.1)

We note that k ≤ �a	.
Using Lemma 2.2 and strong positivity of the representation σ, (4.1) gives

(4.2) μ∗(σ) ≤
k∏

j=1

(

bj∑
ij=a−k+j−1

δ([νij+1ρ, νbjρ])⊗ δ([νa−k+jρ, νijρ]))� (1⊗ σcusp).

Let τ ⊗ σ′ denote an irreducible subquotient of r(t)(σ), for some t, where τ is
an irreducible representation of GL(t, F ) and σ′ an irreducible representation of
Sp(n− t). From Lemma 3.4 we know that σ′ is strongly positive, while from (4.2)
we conclude that there are i1, i2, . . . , ik, a − k + j − 1 ≤ ij ≤ bj , ij − a ∈ Z, for
j = 1, 2, . . . , k, such that τ ⊗ σ′ is a subquotient of

δ([νi1+1ρ, νb1ρ])× · · · × δ([νik+1ρ, νbkρ])⊗
δ([νa−k+1ρ, νi1ρ])× · · · × δ([νaρ, νikρ])� σcusp.

In the following proposition we determine possible situations when σ′ may ap-
pear.

Proposition 4.1. Suppose that there is some strongly positive irreducible sub-
quotient σ′ of the representation δ([νa−k+1ρ, νi1ρ]) × δ([νa−k+2ρ, νi2ρ]) × · · · ×
δ([νaρ, νikρ])� σcusp, where ij − a+ k − j ≥ 0. Then i1 < i2 < · · · < ik and σ′ is
the unique irreducible subrepresentation of the above representation. Moreover, σ′

is the unique strongly positive irreducible subquotient of the above representation.
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Proof. Obviously, σ′ ∈ D(ρ, σcusp). Since σ′ is strongly positive, results of [10]
imply that there is an increasing sequence of real numbers b′1 < b′2 < · · · < b′k′ ,
where k′ ≤ �a	 and b′j − a+ k′ − j ∈ Z≥0 for 1 ≤ j ≤ k′, such that σ′ is the unique
irreducible subrepresentation of

δ([νa−k′+1ρ, νb
′
1ρ])× δ([νa−k′+2ρ, νb

′
2ρ])× · · · × δ([νaρ, νb

′
k′ρ])� σcusp.

We claim that k = k′ and b′j = bj for 1 ≤ j ≤ k.
Observe that the Jacquet module of σ′ with respect to the appropriate parabolic

subgroup contains

δ([νa−k′+1ρ, νb
′
1ρ])⊗ δ([νa−k′+2ρ, νb

′
2ρ])⊗ · · · ⊗ δ([νaρ, νb

′
k′ρ])⊗ σcusp.

Since

μ∗(σ′) ≤ μ∗(δ([νa−k+1ρ, νi1ρ])× δ([νa−k+2ρ, νi2ρ])× · · · × δ([νaρ, νikρ])� σcusp),

Theorem 2.1 implies that there is an irreducible subquotient π of

M∗(δ([νa−k+1ρ, νi1ρ])× δ([νa−k+2ρ, νi2ρ])× · · · × δ([νaρ, νikρ]))

such that the Jacquet module of π with respect to the appropriate parabolic sub-
group contains

δ([νa−k′+1ρ, νb
′
1ρ])⊗ δ([νa−k′+2ρ, νb

′
2ρ])⊗ · · · ⊗ δ([νaρ, νb

′
k′ρ]).(4.3)

Lemma 2.2 implies that there are a − k + j − 1 ≤ xj ≤ ij , j = 1, 2, . . . , k such
that

π ≤
k∏

j=1

(δ([ν−xjρ, ν−a+k−j−1ρ])× δ([νxj+1ρ, νijρ])).

Condition a− k′ + 1 > 0 forces xi = a− k + j − 1. This gives

π ≤ δ([νa−k+1ρ, νi1ρ])× δ([νa−k+2ρ, νi2ρ])× · · · × δ([νaρ, νikρ]).

From the previous inequality and (4.3) it may be concluded that the following
equality of multisets holds:

k∑
j=1

[νa−k+jρ, νijρ] =
k′∑
l=1

[νa−k′+lρ, νb
′
lρ].(4.4)

It follows immediately that k = k′. We have b′k ≥ ij , for each j = 1, 2, . . . , k,
because b′k is the largest exponent appearing on the right-hand side of (4.4).

To study the appearance of the representation (4.3) in the Jacquet module of
the representation π, we use the formula for m∗, which combined with (2.2) implies

that there are a− k+ j − 1 ≤ xj ≤ ij , for j = 1, 2, . . . , k such that δ([νaρ, νb
′
kρ]) ≤

δ([νa−k+1ρ, νx1ρ])× · · · × δ([νaρ, νxkρ]). The equality of sets

[νaρ, νb
′
kρ] = [νa−k+1ρ, νx1ρ] ∪ · · · ∪ [νaρ, νxkρ]

gives xj = a− k+ j − 1 for 1 ≤ j ≤ k− 1 and xk = b′k. This forces b
′
k ≤ ik. By the

previous discussion, we get b′k = ik.
Using (2.2) again, we conclude that there is some irreducible subquotient π′

of δ([νa−k+1ρ, νi1ρ]) × · · · × δ([νa−1ρ, νik−1ρ]) which contains the representation

δ([νa−k+1ρ, νb
′
1ρ])⊗· · ·⊗δ([νa−1ρ, νb

′
k−1ρ]) in its Jacquet module. Canceling (equal)

segments [νaρ, νikρ] and [νaρ, νb
′
kρ] in (4.4) we deduce b′k−1 ≥ ij , for j = 1, . . . , k−1.

Repeating the same arguments as above, we obtain b′k−1 = ij .
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Proceeding in the same way, we conclude that ij = b′j , for j = 1, 2, . . . , k. Thus,
we have proved i1 < i2 < · · · < ik.

What is left is to show that σ′ is the subrepresentation of the induced representa-
tion from the statement of the proposition. Now, Theorem 4.6 from [10] shows that
the unique irreducible subrepresentation of δ([νa−k+1ρ, νi1ρ])×δ([νa−k+2ρ, νi2ρ])×
· · · × δ([νaρ, νikρ])� σcusp is strongly positive. Let us denote this strongly positive
discrete series by σ(i1,i2,...,ik). We show that there are no other strongly positive
irreducible subquotients of the above induced representation.

Observe that σ(i1,i2,...,ik) is an irreducible subrepresentation of

L(δ([νa−k+1ρ, νi1ρ]), . . . , δ([νaρ, νikρ]))� σcusp.

This yields that L(δ([νa−k+1ρ, νi1ρ]), δ([νa−k+2ρ, νi2ρ]), . . . , δ([νaρ, νikρ]))⊗
σcusp is an irreducible subquotient of r(n−n′)(σ(i1,i2,...,ik)).

Suppose that σ′′ is some strongly positive irreducible subquotient of
δ([νa−k+1ρ, νi1ρ]) × δ([νa−k+2ρ, νi2ρ]) × · · · × δ([νaρ, νikρ]) � σcusp different from
σ(i1,i2,...,ik). Suppose that π⊗ σcusp is some irreducible subquotient of r(n−n′)(σ

′′).
Using Lemma 2.2 we obtain that there are indices a − k + j − 1 ≤ xj ≤ ij , j =

1, 2, . . . , k, such that π ≤
∏k

j=1(δ([ν
−xjρ, ν−a+k−jρ]) × δ([νxj+1ρ, νijρ])). As in

the proof of Lemma 3.4, we conclude that xj = a − k + j − 1 for j = 1, 2, . . . , k;
otherwise some νsρ where s ≤ 0 would appear in the cuspidal support of π.

Since π is an irreducible subquotient of
∏k

j=1 δ([ν
a−k+jρ, νijρ]), Lemma 3.1 im-

plies π = L(δ([νa1ρ, νi1ρ]), δ([νa2ρ, νi2ρ]), . . . , δ([νakρ, νikρ])) for some permuta-
tion a1, a2, . . . , ak of a − k + 1, a − k + 2, . . . , a. Since σ′′ is not isomorphic to
σ(i1,i2,...,ik) and L(δ([νa−k+1ρ, νi1ρ]), . . . , δ([νa−k+2ρ, νi2ρ]) appears with multiplic-

ity one in
∏k

j=1 δ([ν
a−k+jρ, νijρ]), there exists some m, 1 ≤ m ≤ k, such that

am �= a − k + m. We choose the largest such m and denote it by m again. Ob-
viously, am < a − k + m and a − k + m ≤ im. This fact gives us the following
embeddings and isomorphisms:

π ↪→ δ([νa1ρ, νi1ρ])× · · · × δ([νamρ, νimρ])× δ([νa−k+m+1ρ, νim+1ρ])× · · · ×
δ([νaρ, νikρ])

↪→ δ([νa1ρ, νi1ρ])× · · · × δ([νam+1ρ, νimρ])× νamρ×
δ([νa−k+m+1ρ, νim+1ρ])× · · · × δ([νaρ, νikρ])

� δ([νa1ρ, νi1ρ])× · · · × δ([νam+1ρ, νimρ])× δ([νa−k+m+1ρ, νim+1ρ])×
νamρ× · · · × δ([νaρ, νikρ])

...

� δ([νa1ρ, νi1ρ])× · · · × δ([νam+1ρ, νimρ])× δ([νa−k+m+1ρ, νim+1ρ])×
δ([νa−k+m+2ρ, νim+2ρ])× · · · × δ([νaρ, νikρ])× νamρ

↪→ νi1ρ× · · · × νa1ρ× · · · × νikρ× · · · × νaρ× νamρ.

Thus, the Jacquet module of π with respect to the appropriate parabolic subgroup
contains νi1ρ ⊗ · · · ⊗ νamρ. It is now easy to see that the cuspidal representation
νi1ρ⊗ · · ·⊗ νamρ⊗σcusp is an irreducible subquotient of the Jacquet module of σ′′

with respect to the appropriate parabolic subgroup. By Lemma 26 from [2] it must
be a quotient. Using Frobenius reciprocity, we see that σ′′ ↪→ νi1ρ× · · · × νamρ�
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σcusp � νi1ρ × · · · × ν−amρ � σcusp. This contradicts strong positivity of σ′′ and
proves the proposition. �

From the proof of the previous proposition and (4.1), it may be concluded
that r(n−n′)(σ) = L(δ([νa−k+1ρ, νi1ρ]), . . . , δ([νaρ, νikρ]))⊗ σcusp. We will see that
rather similar identities also hold for Jacquet modules of the representation σ with
respect to the other maximal parabolic subgroups. Clearly, the above equation
shows that the representation r(n−n′)(σ) is irreducible, which was already noted in
[12].

In the rest of this section, the unique strongly positive irreducible subquotient of
δ([νa−k+1ρ, νi1ρ])× · · · × δ([νaρ, νikρ])� σcusp, where i1 < · · · < ik and k < a+ 1,
will be denoted by σ(i1,i2,...,ik).

The previous proposition implies that the Sp-part of every irreducible represen-
tation which appears in μ∗(σ) has to be isomorphic to some σ(i1,i2,...,ik).

In the next proposition we characterize an irreducible strongly positive represen-
tation due to a prominent member of its Jacquet module. This result enables us to
determine the Sp-parts of the irreducible members of μ∗(σ).

Proposition 4.2. Let σ′ ∈ D(ρ;σcusp) denote an irreducible strongly positive repre-
sentation such that the Jacquet module of σ′ with respect to the appropriate parabolic
subgroup contains δ([νa−k+1ρ, νi1ρ])⊗δ([νa−k+2ρ, νi2ρ])⊗· · ·⊗δ([νaρ, νikρ])⊗σcusp,
where i1 < i2 < · · · < ik and ij − a + k − j ∈ Z≥0 for j = 1, 2, . . . , k. Then σ′ is
the unique irreducible subrepresentation of the representation δ([νa−k+1ρ, νi1ρ]) ×
δ([νa−k+2ρ, νi2ρ])× · · · × δ([νaρ, νikρ])� σcusp, i.e., σ

′ � σ(i1,i2,...,ik).

Proof. We give two proofs of this proposition. The first one is based on the direct
computation with Jacquet modules, while the second one relies on some specific
properties of strongly positive discrete series which have been discussed in the
previous section.

For the first proof, write σ′ as the unique irreducible subrepresentation of the
representation of the form

δ([νa−k′+1ρ, νb
′
1ρ])× δ([νa−k′+2ρ, νb

′
2ρ])× · · · × δ([νaρ, νb

′
k′ρ])� σcusp.

We claim that k = k′ and ij = b′j for j = 1, 2, . . . , k. The exactness and transitiv-
ity of Jacquet modules imply that there is an irreducible subquotient π ⊗ σcusp of
μ∗(σ′) such that the Jacquet module of π with respect to the appropriate parabolic
subgroup contains δ([νa−k+1ρ, νi1ρ])⊗δ([νa−k+2ρ, νi2ρ])⊗· · ·⊗δ([νaρ, νikρ]). Com-
bining Lemma 2.2 with the strong positivity of the representation σ′ we can assert
that π is an irreducible subquotient of δ([νa−k′+1ρ, νb

′
1ρ]) × δ([νa−k′+2ρ, νb

′
2ρ]) ×

· · · × δ([νaρ, νb
′
k′ρ]). Following the same lines as in the proof of Proposition 4.1,

we get desired identities k = k′ and ij = b′j for j = 1, 2, . . . , k. This ends the first
proof.

For the second proof, observe that the transitivity of Jacquet modules yields
that the cuspidal representation

νi1ρ⊗ νi1−1ρ⊗ · · · ⊗ νa−k+1ρ⊗ · · · ⊗ νikρ⊗ νik−1 ⊗ · · · ⊗ νaρ⊗ σcusp

is contained in the Jacquet module of σ′ with respect to the appropriate parabolic
subgroup. As in the proof of Lemma 3.4, we deduce that σ′ is a subrepresentation
of νi1ρ × νi1−1ρ × · · · × νa−k+1ρ × · · · × νikρ × νik−1 × · · · × νaρ � σcusp. It is
immediate that [σ′] = [σ(i1,i2,...,ik)] and Lemma 3.5 completes the proof. �
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We emphasize that the previous lemma holds more generally, i.e., for general
discrete series σ′ ∈ D(ρ;σcusp). In that case Lemma 3.6 should be used to finish
the proof.

Definition 4.3. We call an ordered k-tuple (i1, i2, . . . , ik) of real numbers accept-
able if the following conditions hold:

• i1 < i2 < · · · < ik,
• ij − a ∈ Z, for j = 1, 2, . . . , k,
• a− k + j − 1 ≤ ij ≤ bj , for j = 1, 2, . . . , k.

Observe that, for an acceptable k-tuple (i1, i2, . . . , ik), if the segment [νa−k+jρ,
νijρ] is non-empty for some 1 ≤ j ≤ k, then all the segments [νa−k+j+1ρ, νij+1ρ],
. . . , [νaρ, νikρ] are also non-empty.

Using this selection, we obtain the following embeddings and isomorphisms:

σ ↪→ δ([νa−k+1ρ, νb1ρ])× δ([νa−k+2ρ, νb2ρ])× · · · × δ([νaρ, νbkρ])� σcusp

↪→ δ([νi1+1ρ, νb1ρ])× δ([νa−k+1ρ, νi1ρ])× δ([νa−k+2ρ, νb2ρ])× · · · ×
δ([νaρ, νbkρ])� σcusp

↪→ δ([νi1+1ρ, νb1ρ])× δ([νa−k+1ρ, νi1ρ])× δ([νi2+1ρ, νb2ρ])×
δ([νa−k+2ρ, νi2ρ])× · · · × δ([νaρ, νbkρ])� σcusp

� δ([νi1+1ρ, νb1ρ])× δ([νi2+1ρ, νb2ρ])× δ([νa−k+1ρ, νi1ρ])×
δ([νa−k+2ρ, νi2ρ])× · · · × δ([νaρ, νbkρ])� σcusp

...

� δ([νi1+1ρ, νb1ρ])× δ([νi2+1ρ, νb2ρ])× · · · × δ([νik+1ρ, νbkρ])×
δ([νa−k+1ρ, νi1ρ])× δ([νa−k+2ρ, νi2ρ])× · · · × δ([νaρ, νikρ])� σcusp.

Frobenius reciprocity now shows that, for every acceptable k-tuple (i1, i2, . . . , ik),
representation σ contains the representation

δ([νi1+1ρ, νb1ρ])⊗ δ([νi2+1ρ, νb2ρ])⊗ · · · ⊗ δ([νik+1ρ, νbkρ])

⊗δ([νa−k+1ρ, νi1ρ])⊗ δ([νa−k+2ρ, νi2ρ])⊗ · · · ⊗ δ([νaρ, νikρ])⊗ σcusp

in its Jacquet module with respect to the appropriate parabolic subgroup.
Transitivity and exactness of Jacquet modules imply that for every acceptable k-

tuple (i1, i2, . . . , ik), there is an irreducible subquotient π⊗σ′ of r(t)(σ), for appropri-
ate t, such that the Jacquet module of σ′ with respect to the appropriate parabolic
subgroup contains δ([νa−k+1ρ, νi1ρ])⊗δ([νa−k+2ρ, νi2ρ])⊗· · ·⊗δ([νaρ, νikρ])⊗σcusp.
Proposition 4.2 and Lemma 3.4 force σ � σ(i1,i2,...,ik).

In the following, we determine the GL-parts of the irreducible representations
appearing in μ∗(σ).

Lemma 4.4. Let us denote by τ the induced representation δ([νi1+1ρ, νb1ρ]) ×
δ([νi2+1ρ, νb2ρ])× · · · × δ([νik+1ρ, νbkρ]). If i1 < i2 < . . . < ik, then there exists a
unique irreducible subquotient τ ′ of τ such that the Jacquet module of τ ′ contains
δ([νi1+1ρ, νb1ρ])⊗ δ([νi2+1ρ, νb2ρ])⊗ · · · ⊗ δ([νik+1ρ, νbkρ]). Also, τ ′ ↪→ τ and

τ ′ = L(δ([νi1+1ρ, νb1ρ]), δ([νi2+1ρ, νb2ρ]), . . . , δ([νik+1ρ, νbkρ])).

Proof. Clearly, it is sufficient to show that the representation δ([νi1+1ρ, νb1ρ]) ⊗
δ([νi2+1ρ, νb2ρ])⊗· · ·⊗δ([νik+1ρ, νbkρ]) appears with multiplicity one in the Jacquet
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module of τ with respect to the appropriate parabolic subgroup. We prove this using
formula (2.2), by induction on k.

If k = 1, the claim trivially holds. Suppose that the claim holds for all numbers
less than k. We prove it for k. Formula (2.2) yields that there exist x1, x2, . . . , xk,
ij ≤ xj ≤ bj , j = 1, 2, . . . , k, such that δ([νik+1ρ, νbkρ]) is an irreducible subquotient

of
∏k

j=1 δ([ν
ij+1ρ, νxjρ]) and some irreducible subquotient of

∏k
j=1 δ([ν

xj+1ρ, νbjρ])

contains δ([νi1+1ρ, νb1ρ])⊗ · · · ⊗ δ([νik−1+1ρ, νbk−1ρ]) in its Jacquet module.
In this way, we have obtained the following equality of the sets:

[νik+1ρ, νbkρ] =

k⋃
j=1

[νij+1ρ, νxjρ].

Since ij < ik and xj < bk for 1 ≤ j ≤ k − 1, we deduce xk = bk and xj = ij for
1 ≤ j ≤ k−1. Hence, multiplicity of δ([νi1+1ρ, νb1ρ])⊗· · ·⊗δ([νik+1ρ, νbkρ]) in the
Jacquet module of τ with respect to the appropriate parabolic subgroup equals the
multiplicity of δ([νi1+1ρ, νb1ρ])⊗· · ·⊗δ([νik−1+1ρ, νbk−1ρ]) in the Jacquet module of
the representation δ([νi1+1ρ, νb1ρ])× · · · × δ([νik−1+1ρ, νbk−1ρ]) with respect to the
appropriate parabolic subgroup. The inductive assumption finishes the proof. �

From the previous discussion and Lemma 4.4 we conclude that

L(δ([νi1+1ρ, νb1ρ]), δ([νi2+1ρ, νb2ρ]), . . . , δ([νik+1ρ, νbkρ]))⊗ σ(i1,i2,...,ik)

appears in μ∗(σ) for every acceptable k-tuple (i1, i2, . . . , ik).
We are now ready to complete our description of GL-parts of irreducible repre-

sentations appearing in μ∗(σ).
Suppose that τ ⊗ σ′ is an irreducible subquotient of r(t)(σ), for some t. From

Lemma 3.4 and Proposition 4.1 it follows that σ′ = σ(i1,i2,...,ik), for some acceptable
k-tuple (i1, i2, . . . , ik). It remains to describe τ .

Proposition 4.5. Suppose that τ ⊗ σ(i1,i2,...,ik) is an irreducible subquotient of
r(t)(σ), for appropriate t, where (i1, i2, . . . , ik) is an acceptable k-tuple. Then

τ = L(δ([νi1+1ρ, νb1ρ]), δ([νi2+1ρ, νb2ρ]), . . . , δ([νik+1ρ, νbkρ])).

Proof. Since τ is evidently an irreducible subquotient of the representation

δ([νi1+1ρ, νb1ρ])× δ([νi2+1ρ, νb2ρ])× · · · × δ([νik+1ρ, νbkρ]),

Lemma 3.1 implies that τ is isomorphic to L(δ([νa
′
1ρ, νb1ρ]), δ([νa

′
2ρ, νb2ρ]), . . . ,

δ([νa
′
kρ, νbkρ])), for some permutation a′1, a

′
2, . . . , a

′
k of i1 + 1, i2 + 1, . . . , ik + 1.

Suppose that τ is not isomorphic to the representation

L(δ([νi1+1ρ, νb1ρ]), δ([νi2+1ρ, νb2ρ]), . . . , δ([νik+1ρ, νbkρ]));

i.e., suppose that there is some j, 1 ≤ j ≤ k, such that a′j �= ij + 1.
We fix the embedding of the representation τ as in the subrepresentation version

of the Langlands classification:

L(δ([νa
′
1ρ, νb1ρ]), . . . , δ([νa

′
kρ, νbkρ])) ↪→ δ([νa

′
j1ρ, νbj1ρ])× · · · × δ([νa

′
jkρ, νbjk ρ]),

where j1, . . . , jk denotes a permutation of 1, . . . , k chosen in such way that

e([νa
′
j1ρ, νbj1ρ]) ≤ · · · ≤ e([νa

′
jkρ, νbjk ρ]).

If e([νa
′
nρ, νbnρ]) ≤ e([νa

′
mρ, νbmρ]) for n > m, then bm < bn gives a′n > a′m.

In that case, the segment [νa
′
mρ, νbmρ] is contained in the segment [νa

′
nρ, νbnρ],
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so the representations δ([νa
′
mρ, νbmρ]) × δ([νa

′
nρ, νbnρ]) and δ([νa

′
nρ, νbnρ])×

δ([νa
′
mρ, νbmρ]) are isomorphic. This short discussion enables us to obtain the

following embedding of the representation τ :

τ ↪→ δ([νa
′
1ρ, νb1ρ])× δ([νa

′
2ρ, νb2ρ])× · · · × δ([νa

′
kρ, νbkρ]).(4.5)

Let us denote by x the largest index j, 1 ≤ j ≤ k, such that a′j �= ij +1. Observe
that a′x < ix + 1. Therefore, (4.5) gives the following embeddings:

τ ↪→ δ([νa
′
1ρ, νb1ρ])× · · · × δ([νa

′
x−1ρ, νbx−1ρ])× δ([νa

′
xρ, νbxρ])×

δ([νix+1+1ρ, νbx+1ρ])× · · · × δ([νik+1ρ, νbkρ])

↪→ δ([νa
′
1ρ, νb1ρ])× · · · × δ([νa

′
x−1ρ, νbx−1ρ])× δ([νix+1ρ, νbxρ])×

δ([νa
′
xρ, νixρ])× δ([νix+1+1ρ, νbx+1ρ])× · · · × δ([νik+1ρ, νbkρ]).

We may conclude that the Jacquet module of the representation τ with respect
to the appropriate parabolic subgroup contains the irreducible representation

δ([νa
′
1ρ, νb1ρ])⊗ · · · ⊗ δ([νa

′
x−1ρ, νbx−1ρ])⊗ δ([νix+1ρ, νbxρ])

⊗δ([νa
′
xρ, νixρ])⊗ δ([νix+1+1ρ, νbx+1ρ])⊗ · · · ⊗ δ([νik+1ρ, νbkρ]).

Transitivity of Jacquet modules implies that the Jacquet module of σ with re-
spect to the appropriate parabolic subgroup contains

δ([νa
′
1ρ, νb1ρ])⊗ · · · ⊗ δ([νix+1ρ, νbxρ])⊗ δ([νa

′
xρ, νixρ])⊗ · · · ⊗ δ([νik+1ρ, νbkρ])

⊗δ([νa−k+1ρ, νi1ρ])⊗ δ([νa−k+2ρ, νi2ρ])⊗ · · · ⊗ δ([νaρ, νikρ])⊗ σcusp.

By the exactness and transitivity of Jacquet modules, there is an irreducible
subquotient τ1 ⊗ σ′′ of r(t′)(σ), for appropriate t′, such that the Jacquet module of
σ′′ with respect to the appropriate parabolic subgroup contains

δ([νa
′
xρ, νixρ])⊗ δ([νix+1+1ρ, νbx+1ρ])⊗ · · · ⊗ δ([νik+1ρ, νbkρ])

⊗δ([νa−k+1ρ, νi1ρ])⊗ δ([νa−k+2ρ, νi2ρ])⊗ · · · ⊗ δ([νaρ, νikρ])⊗ σcusp.

Observe that σ′′ is an irreducible representation of Sp(n − t′). From what has
already been proved, we conclude that σ′′ must be isomorphic to some σ(i′1,i

′
2,...,i

′
k′ ),

where (i′1, i
′
2, . . . , i

′
k′) is an acceptable k′-tuple. It follows that σ′′ is a subrepresen-

tation of

δ([νa−k′+1ρ, νi
′
1ρ])× δ([νa−k′+2ρ, νi

′
2ρ])× · · · × δ([νaρ, νi

′
k′ρ])� σcusp.

It is easy to conclude that k′ = k. We proceed by analyzing Jacquet modules of
the representation σ′′.

Strong positivity of the representation σ′′ and Lemma 2.2 imply that

r(n−t′−n′)(σ
′′) ≤ δ([νa−k+1ρ, νi

′
1ρ])×δ([νa−k+2ρ, νi

′
2ρ])×· · ·×δ([νaρ, νi

′
kρ])⊗σcusp.

Thus, the exactness and transitivity of Jacquet modules yield that there is an irre-
ducible representation τ2⊗ δ([νaρ, νikρ]) contained in m∗(δ([νa−k+1ρ, νi

′
1ρ])×· · ·×

δ([νaρ, νi
′
kρ])) such that the Jacquet module of τ2 with respect to the appropriate

parabolic subgroup contains

δ([νa
′
xρ, νixρ])⊗ δ([νix+1+1ρ, νbx+1ρ])⊗ · · · ⊗ δ([νik+1ρ, νbkρ])

⊗δ([νa−k+1ρ, νi1ρ])⊗ δ([νa−k+2ρ, νi2ρ])⊗ · · · ⊗ δ([νa−1ρ, νik−1ρ]).
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Using (2.2), we obtain that there exist indices s1, s2, . . . , sk, a−k+j−1 ≤ sj ≤ i′j
for j = 1, 2, . . . , k, such that δ([νaρ, νikρ]) is a subquotient of δ([νa−k+1ρ, νs1ρ])×
δ([νa−k+2ρ, νs2ρ]) × · · · × δ([νaρ, νskρ]). Obviously, this gives sj = a − k + j − 1
for j = 1, . . . , k − 1, and sk = ik ≤ i′k. So, τ2 is an irreducible subquotient of the
induced representation

δ([νa−k+1ρ, νi
′
1ρ])× δ([νa−k+2ρ, νi

′
2ρ])× · · · × δ([νik+1ρ, νi

′
kρ]).

Proceeding in the same fashion, we obtain ij ≤ i′j for all j = 1, 2, . . . , k. Also,

there is an irreducible subquotient τ3 of δ([νi1+1ρ, νi
′
1ρ])× δ([νi2+1ρ, νi

′
2ρ])× · · · ×

δ([νik+1ρ, νi
′
kρ]) which contains

δ([νa
′
xρ, νixρ])⊗ δ([νix+1+1ρ, νbx+1ρ])⊗ · · · ⊗ δ([νik+1ρ, νbkρ])

in its Jacquet module with respect to the appropriate parabolic subgroup.
Repeated application of the formula (2.2) enables us to conclude that bj ≤ i′j for

j = x+ 1, x+ 2, . . . , k. Further, δ([νa
′
xρ, νixρ]) is an irreducible subquotient of the

representation

δ([νi1+1ρ, νi
′
1ρ])×· · ·×δ([νix+1ρ, νi

′
xρ])×δ([νbx+1+1ρ, νi

′
x+1ρ])×· · ·×δ([νbk+1ρ, νi

′
kρ]).

Clearly, this forces bj ≥ i′j for j = x+ 1, x+ 2, . . . , k and ix ≥ i′x. Besides that,

there is some 1 ≤ l ≤ x − 1 such that i′l = ix. Therefore, i′l ≥ i′x, for l < x,
contradicting acceptability of the k-tuple (i′1, i

′
2, . . . , i

′
k). This proves the theorem.

�

Let us denote by Acc(σ) the set of all acceptable k-tuples in the sense of Defini-
tion 4.3. We gather the results of this section in the following theorem:

Theorem 4.6. Let σ denote a strongly positive discrete series of Sp(n) whose
cuspidal support is contained in D(ρ, σcusp). The following equality holds in G⊗R:

μ∗(σ) =
∑

(i1,i2,...,ik)∈Acc(σ)

L(δ([νi1+1ρ, νb1ρ]), . . . , δ([νik+1ρ, νbkρ]))⊗ σ(i1,i2,...,ik).

5. Jacquet modules of strongly positive representations of the

symplectic group: General case

In this section we prove our results in the general case. Let σ denote a strongly
positive discrete series representation of Sp(n). Suppose that σ is contained in
D(ρ1, . . . , ρm;σcusp), with m minimal and each ρi a unitary self-contragredient
representation. We may suppose that m ≥ 1. Let aρi

> 0 such that νaρiρi �
σcusp reduces. We realize σ as the unique irreducible subrepresentation of the
representation of the form (2.1), i.e.,

σ ↪→ (

m∏
i=1

ki∏
j=1

δ([νaρi
−ki+jρi, ν

b
(i)
j ρi]))� σcusp,

with each ki minimal, for i = 1, 2, . . . ,m (in this way we again exclude all perhaps
empty segments appearing in (2.1)).

We start with a generalization of the definition given in the previous section.
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Definition 5.1. We call an ordered m-tuple of the form

((i
(1)
1 , i

(1)
2 , . . . , i

(1)
k1

), (i
(2)
1 , i

(2)
2 , . . . , i

(2)
k2

), . . . , (i
(m)
1 , i

(m)
2 , . . . , i

(m)
km

))

acceptable if the following holds:

• i
(j)
1 < i

(j)
2 < · · · < i

(j)
kj

, for j = 1, 2, . . . ,m,

• i
(j)
lj

− aρj
∈ Z, for j = 1, 2, . . . ,m, lj = 1, 2, . . . , kj ,

• aρj
− kj + lj − 1 ≤ i

(j)
lj

≤ b
(j)
lj

, for j = 1, 2, . . . ,m, lj = 1, 2, . . . , kj .

To shorten the notation, we sometimes write sj instead of (i
(j)
1 , i

(j)
2 , . . . , i

(j)
kj

), for

j = 1, 2, . . . ,m.
Now we are ready to analyze μ∗(σ). We apply arguments similar to those in the

previous section.
The following result is a straightforward generalization of Lemma 3.1 (we just re-

call that the representations δ([νx1ρ, νy1ρ])×δ([νx2ρ′, νy2ρ′]) and δ([νx2ρ′, νy2ρ′])×
δ([νx1ρ, νy1ρ]) are isomorphic for non-isomorphic ρ and ρ′).

Lemma 5.2. Let ρ1, . . . , ρl denote irreducible unitarizable cuspidal representations
of GL(n1, F ), . . . , GL(nl, F ). Let π be an irreducible subquotient of the representa-
tion

δ([νc
(1)
1 ρ1, ν

d
(1)
1 ρ1])× · · · × δ([νc

(1)
n1 ρ1, ν

d(1)
n1 ρ1])× δ([νc

(2)
1 ρ2, ν

d
(2)
1 ρ2])× · · ·

×δ([νc
(2)
n2 ρ2, ν

d(2)
n2 ρ2])× · · · × δ([νc

(l)
1 ρl, ν

d
(l)
1 ρl])× · · · × δ([νc

(l)
nl ρl, ν

d(l)
nl ρl]),

where d
(j)
1 ≤ d

(j)
2 ≤ . . . ≤ d

(j)
nj for every 1 ≤ j ≤ l. Then,

π = L(δ([νc
′(1)
1 ρ1, ν

d
(1)
1 ρ1]), . . . , δ([ν

c′(1)n1 ρ1, ν
d(1)
n1 ρ1]), δ([ν

c
′(2)
1 ρ2, ν

d
(2)
1 ρ2]), . . . ,

δ([νc
′(2)
n2 ρ2, ν

d(2)
n2 ρ2]), . . . , δ([ν

c
′(l)
1 ρl, ν

d
(l)
1 ρl]), . . . , δ([ν

c′(l)nl ρl, ν
d(l)
nl ρl])),

where each c
′(i)
1 , c

′(i)
2 , . . . , c

′(i)
ni is some permutation of c

(i)
1 , c

(i)
2 , . . . , c

(i)
ni , for i =

1, 2, . . . , l.

Let τ ⊗σ′ be an irreducible subquotient of r(t)(σ), for some t. Using Lemma 2.2

as before, we obtain that there exist indices i
(j)
lj

, j = 1, . . . ,m, lj = 1, . . . , kj , with

i
(j)
lj

− aρj
∈ Z and aρj

− kj + lj − 1 ≤ i
(j)
lj

≤ b
(j)
lj

, such that σ′ is subquotient of

(
m∏
j=1

kj∏
lj=1

δ([νaρj
−kj+lρj , ν

i
(j)
lj ρj ]))� σcusp.(5.1)

Lemma 3.4 implies that σ′ is a strongly positive discrete series. Analysis similar
to that in the proof of Proposition 4.1 (using the results from the fifth section of

[10] and Lemma 5.2), shows that the m-tuple ((i
(1)
1 , . . . , i

(1)
k1

), . . . , (i
(m)
1 , . . . , i

(m)
km

))

is acceptable in the sense of Definition 5.1 and that σ′ is a subrepresentation of the
induced representation (5.1). We denote such a representation by σ(s1,...,sm), where

sj = (i
(j)
1 , . . . , i

(j)
kj

), for 1 ≤ j ≤ m.

Repeating the arguments from the proof of Proposition 4.2 and those after Defi-
nition 4.3, we deduce that for each acceptablem-tuple (s1, . . . , sm) there exists some
irreducible representation τ such that τ ⊗ σ(s1,...,sm) is an irreducible subquotient
of r(t)(σ), for appropriate t.
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The task is now to determine the GL-parts in μ∗(σ). So, suppose that τ ⊗
σ(s1,...,sm) is an irreducible representation appearing in μ∗(σ), where τ is an irre-
ducible representation of the general linear group and (s1, . . . , sm) is an acceptable
m-tuple in the sense of Definition 5.1. By a reasoning completely analogous to that
used in the proofs of Lemma 4.4 and Proposition 4.5, combined with Lemma 5.2,
we get

τ = L(δ([νaρ1
−kρ1

+1ρ1, ν
i
(1)
1 ρ1]), . . . , δ([ν

aρ1ρ1, ν
i
(1)
k1 ρ1]), . . . ,

δ([νaρm−kρm+1ρm, νi
(m)
1 ρm]), . . . , δ([νaρmρm, νi

(m)
km ρm])),

where sj = (i
(j)
1 , i

(j)
2 , . . . , i

(j)
kj

), 1 ≤ j ≤ m. We denote such a representation τ by

L((s1, s2, . . . , sk)).
We denote by Acc′(σ) the collection of all acceptable m-tuples in the sense of

Definition 5.1. In the following theorem, which follows from the previous discussion,
we give an explicit description of the Jacquet modules of strongly positive discrete
series σ with respect to the maximal parabolic subgroups:

Theorem 5.3. The following equality holds in G ⊗R:

μ∗(σ) =
∑

(s1,s2,...,sm)∈Acc′(σ)

L((s1, s2, . . . , sm))⊗ σ(s1,s2,...,sm).

We emphasize that all our proofs regarding Jacquet modules of strongly positive
representations of symplectic groups can be applied in an entirely analogous man-
ner to such representations of special odd-orthogonal groups, since a completely
analogous description of standard parabolic subgroups, classification of strongly
positive discrete series and Tadić’s structure formula ([18, Theorem 6.5]) hold for
these groups.

6. Jacquet modules of strongly positive representations of the

metaplectic group

The purpose of this section is to show how the results established in the previous

sections can be extended to the metaplectic group S̃p(n) over a non-Archimedean
local field F of characteristic different from two.

Thus, let σ denote a strongly positive discrete series of S̃p(n) which we realize,
due to Theorem 5.3 of [10], as a unique irreducible subrepresentation of the induced
representation

(
m∏
i=1

ki∏
j=1

δ([νaρi
−ki+jρi, ν

b
(i)
j ρi]))� σcusp,

with m minimal and each ki minimal, for i = 1, 2, . . . ,m. Here each ρi, i =
1, 2, . . . ,m, denotes an irreducible genuine unitary self-dual cuspidal representation

of ˜GL(ni, F ) such that the induced representation νaρiρi � σcusp reduces.
Let τ ⊗ σ′ denote an irreducible representation appearing in μ∗

1(σ).
First we observe that σ′ is a strongly positive discrete series. The main tool in

the proof of this fact is Lemma 26 in [2], which states that an irreducible cuspidal
subquotient is a quotient, and which can be applied in our situation, as is explained
in detail in the proof of Lemma 3.1 in [6]. As soon as this is established, we can
proceed with the proof similarly as in the proof of Lemma 3.4.
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The arguments used in proofs of the results in Section 4 rely on the Jacquet

modules method, which also applies to group S̃p(n). Moreover, since every repre-
sentation ρi, i = 1, 2, . . . ,m, is self-dual, all the calculations made in the symplectic
case in Section 4 using Lemma 2.2 can be directly carried over to the metaplectic
case, using Theorem 2.3. We note that the isomorphisms of the induced genuine
representations of the metaplectic groups, analogous to those used in the proof of
Proposition 4.1 and after Definition 4.3, follow from Proposition 4.3 of [5].

It is now easily seen that there is some m-tuple (s1, . . . , sm), acceptable in the
sense of Definition 5.1, such that σ′ is the unique irreducible subrepresentation

of the induced representation of the form (5.1), where sj = (i
(j)
1 , . . . , i

(j)
kj

), for

j = 1, 2, . . . ,m. Following the notation introduced in the previous section, we
denote such a representation by σ(s1,...,sm) and let Acc′(σ) denote the collection of
all acceptable m-tuples in the sense of Definition 5.1. Further, analysis similar to
that in the proof of Proposition 4.2 and after Definition 4.3 shows that for every
(s1, . . . , sm) ∈ Acc′(σ) exists some irreducible genuine representation τ such that
τ ⊗ σ(s1,...,sm) appears as an irreducible subquotient of r(t)(σ), for appropriate t.

It remains to describe the G̃L-parts of the irreducible members of μ∗
1(σ).

Since the proof of Lemma 3.1 is entirely based on algebraic techniques and the
Langlands classification, which hold for representations of the two-fold covers of
general linear groups, that proof carries over directly to the irreducible genuine

representations of ˜GL(k, F ). Again, it is a simple matter to obtain an analogous
statement of Lemma 5.2 for genuine representations ρ1, ρ2, . . . , ρm using the results
mentioned above. This puts us in position to apply the same arguments as in
the symplectic case to deduce that if an irreducible genuine representation τ ⊗
σ(s1,...,sm) appears as an irreducible subquotient of r(t)(σ), then τ is isomorphic to
L((s1, s2, . . . , sm)), where L((s1, s2, . . . , sm)) is defined as in the previous section.

Summarizing, we have the following description of Jacquet modules of strongly
positive discrete series of the metaplectic group:

Theorem 6.1. The following equality holds in Ggen ⊗ S:

μ∗
1(σ) =

∑
(s1,s2,...,sm)∈Acc′(σ)

L((s1, s2, . . . , sm))⊗ σ(s1,s2,...,sm).
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